Toll Concessions: Life Cycle Strategy and Performance

Douglas Judd¹, Amy Maharaj¹, Fenella Johns²
N3 Toll Concession¹, Rubicon Solution²
Introduction

• Introduction & overview of N3 Toll Road
• Key Pavement Management Processes
• Concessionaire Responsibility
• Pavement Rehabilitation Strategy
• N3TC Pavement, Design and Performance
• Impact of Deflections on Capacity
• Analysis of 3 Categories of Pavement
• Summary
• Closing thoughts
The Concession Contract

• 30-Year Concession Contract with Government (SANRAL) 1999 to 2029

• Public Private Partnership (PPP) requires N3TC to:
 • Design; • Construct; Finance; Operate; Maintain

• N3TC committed to spending R25-billion on the development of the N3 Toll Route.

• Rehabilitation and Periodic Maintenance expenditure approximately R600 million per annum.

• Routine maintenance expenditure approximately R40 million per annum.

• Customer service oriented.
Toll roads have become a distinct feature of the South African roads landscape

N3 Toll Road one of three privatized concessions
N3TC Network – Key Characteristics

- 415 km length = 1660 lane km:
 - 15 Highway Sections
- 141 Bridges + 181 major culverts
- 4 Mainline Toll Plazas + 4 Ramp Plazas
- Total of 90 toll lanes all with e-Tag payment option
- Traffic volumes: 6000 to 19000 vehicles/direction/day
- Heavy vehicles: 1800 to 3800 per direction per day
- E80/heavy varies 2.6 to 2.8
- Current total traffic growth
 - 2017/18/19: +2.8% p.a (lv 0%, hv 4%)

- Routine Road Maintenance in 4 x 100km section.
- Route Services Patrols 24/7. Approx. 1.5 million km /annum.
N3TC Network – Description

156 km - 2 x 2 Lane Divided Highway
N3TC Network – Description

197 km - 4 Lane Undivided Highway
N3TC Network – Description

62 km - 2 x 2 Lane Divided Concrete Highway
All concrete now have bituminous wearing course
N3TC Annual Pavement Management Process

- Condition Data
- Traffic Data
- Data Management & Condition Analysis System
- Condition & Compliance Reporting
- Deterioration Modelling
- Pavement Engineering Strategy
- Financial Model
- Contract Requirements
- External Audit
N3TC Pavement Management System

- N3TC uses a Pavement Management System developed by Juno Services in New Zealand. (Fritz Jooste)
- Web based: www.junoviewer.com

Condition strip map

Network trends

Deterioration modelling
N3TC Concessionaire Responsibility

• Manage functional condition of the network
 • *Rutting; Roughness & Surface Texture measured annually using RSP*
 • *Deflection measured annually at same time of year (end summer rains)*

• Efficient strategy
 • *Predicted traffic*
 • *Pavement condition and capacity*
 • *Financial and timing flexibility*
 • *Effective contracting*

• Hand back the network, complying with certain performance criteria. Pavement must have remaining life of 18 MESA with Deflection thresholds.
Reconstruction options:

- In-situ asphalt and granular material
- Cement or bitumen treatment
 - If bitumen – Emulsion vs Foamed bitumen
- Asphalt will become thick over time
- Need to be aware of potential deformation
- Steel slag and other cubical shaped aggregate

Polymer modified bitumen: 4.2% SBS
Pavement Performance: Deflections for Highway Section

N = 1 135 42 80 131 2 0 0 0 0 0 69 53 26 88 253 28 207 53 97
N3TC Annual Pavement Management Process

- Condition Data
- Traffic Data
- Data Management & Condition Analysis System
- Condition & Compliance Reporting
- Contract Requirements
- Deterioration Modelling
- Pavement Engineering Strategy
- Financial Model
- Maintenance and Rehabilitation Projects

Flow Diagram:
- REVENUE
- ENGINEERING INPUT
- FUNDING
Pavement Rehabilitation Strategy

- Original Strategy based on Systematic Periodic Maintenance – Asphalt Overlays.
- **A CONCESSON RISK - INHERENT PAVEMENT / MATERIALS DEFECTS NOT IDENTIFIED. LARGE CLAIM AGAINST DESIGNERS.**
- Re-engineered strategy developed 5 years into Concession for the remaining 25 years.
- Required innovative methods of dealing with marginal materials.
- New strategy increased Capital cost by 20%.
- Luckily, traffic growth greater than original forecast.
- Strategy development now by Rule Based Modeling and Bill of Quantity based Manual Check.
N3 Rehabilitation Design Considerations

- Minimize disruption to road user
- At least one lane remains open to traffic in each direction
- Reuse existing materials wherever possible
- Achieve balanced flexible pavement
- 8 – 10 year forward maintenance cycle
- End of Concession hand-back requirements
Managing a Network: PPP vs Public Agency

<table>
<thead>
<tr>
<th>COMPARISON BETWEEN PPP PROJECT AND PUBLIC PROJECT</th>
<th>Toll Road Management (Private)</th>
<th>Large Network Management (Public)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driven by</td>
<td>Functional Requirements</td>
<td>Political policy</td>
</tr>
<tr>
<td></td>
<td>Financial Constraints</td>
<td>Funding Constraints</td>
</tr>
<tr>
<td>Input</td>
<td>Good Traffic Data</td>
<td>Averaged traffic data</td>
</tr>
<tr>
<td></td>
<td>Good growth forecasts</td>
<td>Average growth forecasts</td>
</tr>
<tr>
<td></td>
<td>Up to date condition data</td>
<td>Limited condition data</td>
</tr>
<tr>
<td></td>
<td>Good historical data</td>
<td>Funding competition</td>
</tr>
<tr>
<td></td>
<td>Good Performance knowledge</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flexibility</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Financial Constraints</td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td>Remaining Life Strategy</td>
<td>Prioritised program</td>
</tr>
<tr>
<td></td>
<td>Flexibility in engineering judgement</td>
<td>Network level</td>
</tr>
<tr>
<td></td>
<td>Network <-> Project level</td>
<td>Determines Funding Required</td>
</tr>
<tr>
<td></td>
<td>Residual Life Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Financially controlled</td>
<td></td>
</tr>
<tr>
<td>Style</td>
<td>Micro Management</td>
<td>Macro Management</td>
</tr>
<tr>
<td></td>
<td>Long term Forecasts</td>
<td>Medium term forecasts</td>
</tr>
<tr>
<td></td>
<td>30 year performance prediction</td>
<td>20 year design life??</td>
</tr>
<tr>
<td></td>
<td>Rule based</td>
<td>Mechanistic based</td>
</tr>
</tbody>
</table>
N3 Pavements

- N3 Pavement layers in general
 - 5 to 12 cm asphalt
 - 12 to 16 cm crushed stone base
 - 30 cm cement stabilized subbase (UCS > 1.5 MPa)
 - 30 cm gravel subgrade (CBR > 15)
- Predominant failure mechanism
 - Rutting
 - Cracking and pumping
 - Mostly related to loss of density, moisture ingress, smectite group of clays
Common Understanding: Design Methods
Deflection increases with time

Change in effective dynamic modulus
N3 Network: Deflection Trend 2000 - 2019
Comparison of a variety of Pavements
Actual Capacity vs Pavement Number

• Recalibrated Pavement Number (PN new) is a measure of strength and thickness
• An adaption of the Structural Number

• Assessment is sensitive to
 • Accuracy of traffic data
 • Accuracy/frequency of deflection measurements
 • Frequency of maintenance
Comparison of a variety of Pavements
Actual Capacity vs Pavement Number
Understanding our Pavements Better: Deflection Study

- Three types of pavements were identified on a qualitative basis
 - “Strong”
 - “Intermediate”
 - “Weak”
- Sections of pavements were chosen in the three categories based on intimate knowledge of the pavement structure, treatment history and intervals between treatments.
- Discrete sections were chosen to ensure the pavement structure is the same.
- The Pavement Number was also calculated and used in the comparison.
“Strong” Example: N3-5 North

Cumulative Traffic Carried (MESA)

Deflections (microns)
“Weak” Example: N3-4 South
“Strong” Pavements
“Intermediate” Pavements

Deflections (microns) vs. Cumulative Traffic Carried (MESA)
Conclusion of Study

• “Strong” Pavement Sections
 • *Some variability in deflection but section has carried significant traffic (>20 MESA)*

• “Intermediate” Pavement Sections
 • *Less variability in deflections but carried less traffic in analysis period*

• “Weak” Pavement Sections
 • *Highly variable deflections with traffic 20 MESA and shorter intervals between treatments*

• Deflections stable with time, showing no increasing trend
Summary

• A Concessionaire approach is to ensure an optimized life cycle cost taking cognizance of Concession Period and end of Concession requirements.
 • *Accurate traffic and deflection data is important.*
• Better quality data allows the Network Manager to predict performance with more confidence.
• The ongoing study of deflections and change in structural capacity over time for the N3TC Network indicates expected trends underlying design methods are conservative, and perhaps even inappropriate.
 • *Is the design approach appropriate?*
• Assuming a competent pavement structure, regular maintenance cycles efficiently maintain an adequate structural capacity, with stable deflections.
Question: TRH12: Is this still relevant?
Thank you